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Abstract—Performance modeling is often employed to under-
stand and project application performance. This paper takes it
in another direction, applying performance modeling to provide
practical direction when running the popular iterative solver
algebraic multigrid (AMG). We make use of performance models
to help users of AMG make two often difficult decisions regarding
programming model and tradeoff of communication and compu-
tation. In the case of the former, we use a performance model for
hybrid MPI/OpenMP to give users information on preferable on-
node mixes of MPI tasks and OpenMP threads. For the latter,
we apply a performance model at runtime to guide gathering
and placement of data in communication-intensive portions of
AMG onto a subset of the processes that trades communication
for computation, improving performance on current-generation
machines. We envision this kind of applied performance modeling
to be of continued use for AMG and other applications in the
future.

I. INTRODUCTION

HPC applications today find themselves needing to adapt
to a computing landscape that features more and more massive
parallelism, expressed in many different ways in the underlying
architecture. This has led to explorations into better tailoring
the programming model to suit these new machines, which
feature massive on-node parallelism, and better tailoring the
applications themselves to run on massively parallel platforms.

The adaptations to both application and programming
model bring with them a number of tunable parameters that
need to be set properly in order for things to run well. One
common programming model adjustment is to introduce the
use of a threaded programming model like OpenMP within
a message passing code written using MPI, so that some or
even all of the on-node parallelism is handled through a more
natural shared memory model. Getting the best performance
then requires setting the correct mix of MPI tasks and OpenMP
threads to use on the nodes of the machine.

A common application adjustment is to trade communica-
tion for computation, under the new conventional wisdom that
computation is cheap but moving data is expensive. As true as
this is, the extent of this tradeoff that is best to make requires a
good amount of fine-tuning. Not enough of it brings too few of
the benefits, and too much of it overwhelms the gains from the
reduced communication with the added computation burden.

Performance modeling is often employed to better under-
stand the inner workings of both applications and architectures,
and this can help better inform application development and
adaptation to the changing HPC landscape through in-depth
performance analyses and projections. With all the information
performance models are capable of providing, it is natural to
want them to be able to guide the selection and adjustment of
tunable parameters such as the ones described above, as there
is potentially a lot of guesswork on the part of users as to how
to best set them, and for users like scientists and engineers
who are using HPC applications to perform simulations for
their research, time that they would spend tuning parameters
is time not spent directly conducting their research.

In this paper, we apply performance modeling to help
set such tunable parameters for algebraic multigrid (AMG),
a popular solver for large, sparse systems of linear equations
that finds use in a wide range of scientific applications. We
examine both hybrid MPI/OpenMP use on multicore nodes,
and communication/computation tradeoff. In particular, we:

• Provide effective recommendations on the best mix of
MPI tasks and OpenMP threads to use when running
AMG on a machine with multicore nodes.

• Guide communication/computation tradeoff on the fly
while running AMG, ensuring we perform an amount
of it that improves performance.

The two benefits are cumulative, as the communica-
tion/computation tradeoff guided by the model can be used
when running in a hybrid MPI/OpenMP configuration that
is suggested by it earlier. Experiments on two modern HPC
platforms validate our approach.

The remainder of this paper is organized as follows.
Section II introduces AMG. Section III discusses the use of
hybrid MPI/OpenMP programming in AMG, then introduces
a performance model for hybrid MPI/OpenMP in AMG and
adapts it to make suggestions for on-node mixes of MPI
tasks and OpenMP threads. Section IV proceeds to adapt the
performance model for runtime use, and then uses the model
to guide a data gathering approach that achieves communi-
cation/computation tradeoff by combining the data sets of
different processes. We give concluding remarks in Section
V.



II. ALGEBRAIC MULTIGRID

Multigrid methods are efficient iterative solvers of many
systems of sparse linear equations. When designed properly,
they are algorithmically scalable, i.e. they can solve a linear
system with N unknowns with only O(N) work. This prop-
erty gives them the potential to solve ever larger problems
on proportionally larger parallel machines in constant time.
Multigrid methods achieve this optimality by employing two
complementary processes: smoothing and coarse-grid correc-
tion. In the classical setting of scalar elliptic problems, the
smoother (or relaxation method) is a simple iterative algo-
rithm like Gauss-Seidel or weighted Jacobi that is effective at
reducing high-frequency error. The remaining low-frequency
error is then accurately represented and efficiently eliminated
on coarser grids via the coarse-grid correction step. Algebraic
multigrid (AMG) is a flexible and unique type of multigrid
method that does not require geometric grid information. In
AMG, coarse grids are simply subsets of the fine grid variables,
and the coarsening and interpolation algorithms make use of
the matrix entries to select variables and determine weights.
These algorithms can be quite complex, particularly in parallel.
While AMG can be used as a standalone solver, it is often used
as a preconditioner for a Krylov method, such as conjugate
gradient (CG) or GMRES. We will use it as a preconditioner
for CG.

We will now define the AMG algorithm used in our
experiments. Consider a linear system of the form Au = b,
where A is sparse n × n matrix and u and b are vectors of
size n. The components of AMG, i.e. interpolation, restriction
and coarse grid operators, are determined in a first step, known
as the setup phase:

1) Set k = 0, A0 = A.
2) Determine the coarse grid variables using a coarsen-

ing algorithm.
3) Define the interpolation operator P kk+1.
4) Define the restriction operator Rkk+1 (here Rkk+1 =

(P k)T ).
5) Set Ak+1 = Rkk+1AkP

k.
6) Set up a smoother Sk, if necessary.
7) If Ak+1 is small enough, set m = k + 1 and stop.

Otherwise, set k = k + 1 and go to step 2.

Once the setup phase is completed, the solve phase, can
be performed. While there are various options on performing
the solve phase, we are using a V-cycle, which is defined by
the following algorithm, using an initial guess x0:

r0 = b−A0x0
For k = 1, ...,m− 1
xk = 0

end
For k = 0, ...,m− 1
xk = S−1

k (rk −Akxk)
rk+1 = (P kk+1)

T (rk −Akxk)
end
Solve Amxm = rm.
For k = m− 1, ..., 0
xk := xk + P kk+1xk+1

xk := xk + S−T
k (rk −Akxk)

end

serial AMG!
coarse solve!

all-gather!
at level l!

smooth,!
form residual!

restrict to!
level i+1!

prolong to!
level i-1!

smooth!

Fig. 1. AMG V-cycle with the fundamental operations at level l highlighted.
These are smoothing, residual formation, restriction, and interpolation (also
known as prolongation).

A summary of the operations at each level of an AMG V-cycle
are in Figure 1.

In our experiments, we use the BoomerAMG solver [1]
in the hypre software library [2]. On the finest level, we
use aggressive coarsening with multipass interpolation [3]. On
the following levels, HMIS coarsening [4] with extended+i
interpolation [5] truncated to at most 4 elements per row is
used. Our smoother is hybrid Gauss-Seidel, which is comprised
of Gauss-Seidel iteration between process boundaries and
Jacobi iteration across process boundaries, leading to block
diagonal matrices Sk, where the i-th diagonal block is the
lower triangular part of the local portion of Ak that is owned
by process i and p is the number of processes. In all our
experiments AMG is used as a preconditioner for the conjugate
gradient method. More detailed information on AMG may be
found in [6], [7].

Sparse matrices in BoomerAMG are stored in a ParCSR
matrix data structure. In the data structure, if there are p MPI
processes, the matrix A is partitioned by rows into matrices
Ak, with k = 0, . . . , p − 1. Each matrix Ak is stored with
a process as two sequential compressed sparse row (CSR)
sparse matrices, Ak = Dk+Ok. Dk contains the entries in Ak
with column indices that point to rows stored on process k.
Ok contains the remaining entries. Computing a matrix vector
product (MatVec) Ax involves for each process k computing
Akx = Dkx

D + Okx
O, where xD is the portion of x stored

locally on process k and xO is the portion that is stored
on other processes, requiring communication. Further detail
is available in [8]. Hybrid MPI/OpenMP use is accomplished
by using OpenMP threads within MPI tasks at the loop level
in the form of parallel for constructs, which spawn a
number of threads that simultaneously execute portions of the
loop being parallelized.

III. HYBRID MPI/OPENMP PREDICTION FOR AMG

One of the challenges to getting good performance from
AMG is performance degradation on coarse grids owing to in-
creased communication. Processes have more communication
partners that are farther away. There is much less computation
to keep them busy while waiting for data from these many
partners. This was analyzed in depth in [9].

Hybrid MPI/OpenMP programming is attractive in this
setting for its potential to alleviate these issues. It was explored
in depth for AMG in [10] and [11], and found to be of benefit
on two machines with multicore nodes, an Opteron cluster



and a Cray XT5. Later studies [12], [13] looked at the Cray
XK6 and the IBM Blue Gene/Q, and developed a performance
model for AMG when run using hybrid MPI/OpenMP that
was able to explain the observed performance on the tested
machines. While using hybrid MPI/OpenMP in fact brought
benefits in the form of communication reduction, there were
also drawbacks in the form of reduced computation perfor-
mance that limited the amount of OpenMP that could be
utilized. The specific balance of communication reduction and
computation slowdown varied by machine, which caused the
best on-node mix of MPI tasks and OpenMP threads to vary.

The studies cited above focused on the effect of architecture
on hybrid MPI/OpenMP performance, but the specific problem
being solved is certain to have an effect on hybrid performance
as well. Different problems, and in fact different sizes of the
same problem run on the same number of cores, are going to
have different balances of communication and computation.
The range of possibilies for on-node mixes of MPI and
OpenMP is also expanding with simultaneous multithreading
(SMT), found on machines such as Blue Gene/Q. The end
result is that users face a lot of potentially costly guesswork
as to which on-node mix of MPI and OpenMP performs the
best for their problem/machine pair.

Here, we present a relatively straightforward and effi-
cient way for making informed decisions about the best on-
node mix of MPI and OpenMP for AMG on a particular
problem/machine pair. It leverages the hybrid MPI/OpenMP
performance model for the AMG solve cycle from [12] ito
suggest to users appropriate on-node mixes of MPI tasks and
OpenMP threads. Over the course of this section, we introduce
and summarize the performance model we will be using, apply
it to generate suggested MPI/OpenMP mixes, and compare the
suggestions to actual results.

A. Performance Model

The hybrid MPI/OpenMP performance model from [12]
was based on going through each individual level of an AMG
V-cycle and counting the fundamental operations: smoothing,
forming the residual, restriction, and interpolation. Each oper-
ation was treated as sparse matrix-vector multiplication using
the appropriate operator. Matrix entry and communication
counts, available from hypre’s data structures, were combined
with measured machine parameters to form an analytical
expression for the total cycle time.

We will be discussing the model in more detail in Sec-
tion IV-B, when we go into adapting it for use at runtime.
Here, we summarize the portions of the model that specifically
deal with hybrid MPI/OpenMP. In its baseline form, the model
splits the cost of each MatVec into its communication and
computation components. The specific amount of computation
is based on the number of matrix nonzero entries per core,
while the specific amount of communication is based on the
number of messages sent and the amount of data sent in
those messages. This assumes that only MPI tasks are used
for parallelism.

When adding OpenMP to the mix, the communication
counts are assumed to change based on whatever the new
number of MPI tasks. Computation counts also do not change,
as they are based on the number of matrix nonzero entries

per core. What does change, however, is the computation
time, which is penalized based on two scenarios. The first
is limited memory bandwidth. With no definite partitioning
of local memory like there is in the message passing case,
threads can contend with each other when accessing memory
that is shared by multiple cores. This is taken into account
when using t threads by multiplying the time per floating-
point operation by b1

bt
, where bi is the memory bandwidth

per thread when using i threads. The second is migration of
threads across cores by the operating system. This can happen
when running a hybrid MPI/OpenMP program, and when such
migration occurs across cores that are on different sockets,
there can be a significant decline in on-node performance.
This is penalized with the worst case in mind. If pnode is
the number of processors on a node, and t is the number of
threads, then we multiply the time per floating-point operation
by max

{
1, t

pnode

}
. The overall penalized compuation time is

obtained by multiplying the time per floating-point operation
by both penalties.

B. Making Predictions

The performance model summarized above was ini-
tally created to be descriptive, to explain observed hybrid
MPI/OpenMP performance in AMG. There are substantial
challenges faced when trying to make it predictive so that it can
give suggestions for on-node MPI/OpenMP mixes to use. In
general, a preexisting AMG hierarchy with operator statistics
and communication counts is not going to be available. And
even if one were available, changing the MPI/OpenMP mix
requires adjusting the communication counts.

In getting around these constraints, we are inspired by an
approach taken in an early study of the exascale potential
of FFTs and multigrid [14] that was based on performance
models of both applications. With no actual exascale machine
or even a design for one avaiable, the approach was to instead
allow the machine parameters to vary and determine regions in
the parameter space within which exaflop/s performance was
possible. Similarly, without an AMG hierarchy complete with
communication counts and operator statistics, we instead allow
the amount of communication and computation in the cycle to
vary and determine regions in the space of the two components
when using a certain degree of hybrid MPI/OpenMP provides
improvement over using only MPI. Specifically, we assume
that an AMG cycle when run all-MPI has a certain percentage
of its time devoted to computation, with the rest of the time
devoted to communication. With the help of the OpenMP
penalties from the performance model, we can calculate for
a given mix of OpenMP threads and MPI tasks how much
communication reduction is necessary to show an improvement
in performance.

For simplicity of calculation, assume a cycle takes 100
seconds. We split the cycle time Tcycle into its communication
and computation compoenents:

Tcycle = 100 = Tcomp + Tcomm

Define fcomm to be the fraction of the communication time
needed to get an improvement using OpenMP. Given the
penalty pomp to the computation time for using OpenMP, we



TABLE I. MEMORY BANDWIDTH PER THREAD (MB/S) FOR VULCAN
AND TITAN.

OpenMP Threads Vulcan Titan
1 3921.9 9919.6
2 3910.3 5107.3
4 3886.4 3666.0
8 3512.5 1909.1
16 1747.6 1392.1
32 881.00 –
64 434.44 –

want the region where

pompTcomp + fcommTcomm ≤ 100,

which we visualize by plotting the region

0 ≤ fcomm ≤
100− pompTcomp

100− Tcomp

for Tcomp ranging from 0 to 100 (corresponding to 0% and
100% computation in the cycle, respectively). Plotting this
“improvement region” for different MPI/OpenMP mixes on the
same axes gives a concrete idea of preferable MPI/OpenMP
mixes for different problems on a particular machine.

We are still left with predicting how much simultaneous
multithreading to use. A performance model for simultaneous
multithreading was developed for Blue Gene/Q [13] that treats
it as an additional penalty to the computation rate. However,
there is no generic multi-machine model for it. We currently
assume full SMT use on the machine we test that has this
capability, and leave determination of the amount of it to use
as future work.

C. Prediction Results

We tested our prediction scheme on four different ma-
chines, using the 3D 7-point Laplacian as our model problem.
To measure memory bandwidths for the OpenMP penalties,
we used the STREAM benchmark [15]. For each machine, we
plotted the corresponding hybrid MPI/OpenMP improvement
region, and then compared the suggestions from the plots
with actual results from running 7-point Laplace problems of
varying sizes using varying on-node MPI/OpenMP mixes.

1) Machines: Vulcan is a 24,576 node IBM Blue Gene/Q
at Lawrence Livermore National Laboratory. There is one 1.6
GHz 16 core processor per node, with SMT capability for up
to 4 threads per core. The hardware bandwidth between nodes
is 40 GB/s. All experiments use IBM’s compiler, and the MPI
implementation is an IBM-derived version of MPICH2.

Titan is an 18,688 node Cray XK7 at Oak Ridge Na-
tional Laboratory. Each node features one 2.2 GHz 16 core
AMD Opteron 6274 processor, which we treat as two 8 core
processors for the purposes of the hybrid model because the
AMD Opteron 6200 series processor actually consists of two
dies with eight cores per die [16]. Each node also features
one NVIDIA Tesla K20 GPU, which we do not consider
here. The nodes are connected by Cray’s Gemini interconnect,
which features a 3D torus topology with a hardware bandwidth
of 20.8 GB/s between nodes. All experiments use the PGI
compiler, version 13.10.0. The MPI implementation is Cray’s
native MPI.
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Fig. 2. Improvement regions for using hybrid MPI/OpenMP on Vulcan and
Titan.

2) Results: Figure 2 shows the improvement regions for
using a given number of OpenMP threads per MPI task on
each machine, with the per-thread memory bandwidth numbers
we used for the calculation in Table I. The results suggest
that on Titan, only MPI should be used except for very
communication-dominated problems. On Vulcan, the results
lean towards using 4 or 8 OpenMP threads per MPI task,
which correspond to 16 or 8 MPI tasks per node, respectively.
Since Blue Gene machines have very good interconnects, it is
likely that using 4 OpenMP threads in 16 MPI tasks is the best
choice.

3) Comparison with Actual Results: To see how well we
did with predicting the right mix of MPI/OpenMP mix, we
used AMG to solve 3D 7-point Laplacians on 512 cores of each
machine we evaluated, for problems ranging from 10×10×10
points per core to 50 × 50 × 50 points per core, running 20
AMG cycles. The average cycle times are in Figure 3. On
Vulcan the best configurations overall were 8 MPI tasks per
node and 16 MPI tasks per node. Greater numbers of MPI tasks
per node became competitive only for the two largest problem
sizes, and the best configurations were still fairly competitive.
Overall, the results matched the improvement regions well.

On Titan, the best cycle time was for running MPI only
in all cases, except for the smallest problem, for which the
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Fig. 3. Cycle times when using AMG to solve the 7-point Laplacian for a
variety of problem sizes and MPI/OpenMP mixes on Vulcan and Titan.

best cycle time occurred running with 8 MPI tasks per node
and 2 OpenMP threads per MPI task. This mostly matched the
improvement regions, save for the inability of configurations
with more OpenMP to be competitive for the smallest problem.
The 8 MPI/2 OpenMP configuration was also a close second
for the other problem sizes.

IV. GUIDING DATA REDISTRIBUTION IN AMG

Having explored using a performance model to guide the
use of hybrid MPI/OpenMP for AMG, we now turn towards
applying it at another phase of the algorithm. We use a
performance model to guide data redistribution during the
AMG setup phase and solve cycle that reduces communication
at the expense of added computation.

Data redistribution to reduce communication has a rich
history owing to potential gains from reducing communication.
Gropp [17], using a very basic performance model, suggested
that on one of the coarse grids, distributing the problem data
redundantly across every involved processor would improve
performance. This feature was later added to hypre starting
with version 2.8.0b [18], and yielded substantial speedups for
AMG in some cases [19], but the benefits were found to dimin-
ish at scale. Womble and Young [20] implemented a geometric
multigrid method that had pairs of communicating processors

with 2 or fewer unknowns in any dimension combine and
replicate their data, and reported improved parallel efficiency.

Others redistributed data without using redundancy, con-
centrating data onto fewer processes on coarse grids to reduce
communication. Nakajima [21] concentrated data onto one
process on the coarsest grid in a geometric multigrid solver and
then further deepened the multigrid cycle on that process. The
smoothed aggregation AMG solver ML from Sandia National
Laboratories [22] allows for the concentration of data on
coarse grids onto fewer processes for load balancing and to
prevent convergence degradation. Sampath and Biros [23] also
concentrated data for load balance purposes in an octree-based
geometric multigrid solver.

These methods face two big challenges. The first is de-
ciding at what level in the multigrid hierarchy to perform
redistribution. Performing it at too fine of a level causes
an overload of computation which wipes out any benefit
from reducing communication. Performing it at too coarse
of a level results in marginal gains at best, due to missing
opportunities to reduce communication in costlier parts of the
cycle. The second is the degree of redistribution. The amount
of problem data concentrated onto the individual processes
in a redistribution scheme can be varied, which changes the
amount of communication reduction and computation increase.
When redistribution brings benefit, the best choice is usually
somewhere in between eliminating communication entirely and
leaving things unchanged.

The methods mentioned above either have fixed redistri-
bution criteria or control it through parameters that potentially
need a lot of guesswork to determine correctly. hypre currently
has the level at which redundancy is employed as an option
to be set by the user, in the form of a number of unknows
below which the switch is made. ML has that plus a few
other user-specifiable options to control data redistribution.
Sampath and Biros used a minimum grain size, below which
redistribution was performed to ensure load balance. Their
minimum grain size was determined using a heuristic, but in
follow-up work [24], Sundar et. al. noted that it may need to
be determined empirically.

This is where performance modeling comes in. We tie data
redistribution to a performance model that we can employ at
runtime to decide both when to perform data gathering, and
how much of it should be performed, to ensure that we get a
benefit versus doing nothing at all. Over the remainder of this
section, we describe our approach, show how we tie it to a
performance model, and demonstrate speedups when using it
in practice on modern parallel machines.

A. Redistribution Approach

Our data redistribution approach follows the work of
Gahvari, et. al. [25], which divided the problem domain into
chunks and assigned processes to them. Each process owned
everything in its chunk, making the data redistribution a
redundant one. A mapping strategy was used in conjunction
with a cyclic mapping of MPI ranks to nodes to confine
computation to nodes, and a performance model was used
to make the redistribution decision. Speedups of up to 2-3x
were observed on a multicore Linux cluster with very poor



network performance running on up to 4096 cores, and the
programming model was MPI only.

We diverge slightly from their approach, however, due to a
couple of considerations. First, we employ nonredundant data
gathering. The reason is that we want to run on larger processor
counts, and there is a risk of running into either a memory-
based or MPI implementation-based upper limit on the number
of new MPI communicators we can create [26]. We also do
not consider localization of communication to nodes here.
While such localization has much potential for performance
improvement, we are here examining machines with much
more modern interconnects; without a good model of how
things change when going to only on-node communication,
which we do not have yet, we would rather tread with caution
and avoid an incorrect decision as to when to perform data
redistribution and how much of it to perform.

What we do is, on each grid during the AMG setup phase
except for the finest one, make a decision to coarsen and form
the next grid or redistribute first before resuming coarsen-
ing. This decision is made with the help of a performance
model, which estimates the cost of redistributing and using
the redistributed operators versus not doing so, and makes a
decision based on these cost estimates. The performance model
depends on measurable machine parameters and information
that is readily available from the data structure in hypre. The
redistribution itself involves groups of MPI ranks that still have
data combining it through MPI_Gatherv operations, and
each group storing its pooled data on one of its members. For
simplicity, we divide the participating MPI ranks (the ones that
have data) into a number of chunks. If this number does not
divide the ranks evenly, then, if P is the number of processes
and C is the number of chunks, the first P mod C chunks
have

⌈
P
C

⌉
processes, and the rest have

⌊
P
C

⌋
processes.

After redistribution, setup proceeds on the redistributed
operator over the processes that still have data. Each such
process will have only C−1 neighbors at most to communicate
with, but more computation to do as well than if there
were no redistribution, hence the communication/computation
tradeoff. We assume here that C is less than the maximum
over all processes of the number of messages being sent, to
ensure that we reduce communication. The solve cycle will,
beyond the point of redistribution, also use the redistributed
operator, with involved processes having to perform the same
MPI_Gatherv operations to combine their components of
the solution vector. When progressing from coarse to fine,
passing the redistribution point will involve the root process
of each MPI_Gatherv performing an MPI_Scatterv op-
eration to send the appropriate parts of the solution vector to
the processes that need them.

We next explain how we use the performance model at
runtime, and then show results of using it to guide data redis-
tribution on the same machines where we examined selecting
the mix of MPI tasks and OpenMP threads.

B. Guiding with a Performance Model

To guide data redistribution, we use the same performance
model for the solve cycle that served us previously when we
examined selecting the mix of MPI tasks and OpenMP threads
to use. As we will explain here, it can also be readily adapted

to guiding the redistribution when using hybrid MPI/OpenMP,
an expansion on the prior MPI only work of Gahvari, et. al.
But first, we will need to explain more of its details.

1) Model Details: We begin counting matrix-vector mul-
tiplications. At each level of an AMG cycle, there are five
matrix-vector multiplications or equivalent operations. Three
involve the solve operator: the two smoothing steps and
residual formation. Two involve the interpolation operator:
restriction and interpolation. The interpolation operator, how-
ever, is not available to us because forming it would require
coarsening to form the next coarsest grid, a step we cannot
undertake before deciding whether or not we are going to
redistribute data first. We instead approximate the MatVecs
that require the interpolation operator with MatVecs that use
the solve operator.

Our model for a MatVec is as follows. We express it first in
terms of a baseline α-β model, which gives each message sent
a cost of α+nβ, where α is the communication start-up time,
and β is the cost to send one double-precision floating-point
value, and then add penalties to take architecture into account
as was done in [9] and [12]. We first define the following
parameters in addition to α and β:

• Ni – number of nonzero entries in the level i solve
operator

• Pi – number of processes with data on level i

• pi – maximum number of sends in the level i solve
operator over all involved processes

• ni – maximum number of elements sent in the level
i solve operator over all involved processes

• ti – time per floating-point operation on level i

The time to perform a MatVec with the level i solve operator
then becomes

T imatvec(α, β) = 2
Ni
Pi
ti + piα+ niβ.

We augment this baseline model with additional terms
and penalties to reflect issues seen on real machines. These
penalties can be “on” or “off” depending on the machine, and
the best fit for a particular machine will have some penalties
on and some penalties off. Our first penalty is to add a γ term
that represents the delay per hop when sending a message,
to take into account messages traveling long distances. The
corresponding change in the baseline model is to replace α
with

α(h) = α(hm) + (h− hm)γ,

where h is the number of hops a message travels, and hm is
the smallest possible number of hops a message can travel in
the network. We assume h to be the diameter of the network
within the job’s partition to take routing delays into account.
hm is 1 in a torus or mesh network, and 2 in fat-tree networks,
in which a message travels through at least one switch, which
involves using two links.

Another issue seen in practice is limited bandwidth. Mes-
sage passing applications have difficulty achieving the full
hardware-provided bandwidth in ideal conditions. The band-
width they can achieve in ideal conditions is in turn difficult to



achieve in non-ideal conditions. Limited bandwidth also arises
due to contention from messages sharing links. We take both
of these into account with a penalty to β. Let Bmax be the
peak aggregate per-node bandwidth, and let B be the measured
bandwidth corresponding to β, which is 8

β if β is the time to
send one double-precision floating-point value. The penalty for
being unable to achieve the full hardware bandwidth is Bmax

B .
To account for link contention, we let m be the number of
messages in the network, and l be the number of links available
to the job. The link contention portion of the penalty is then
m
l . The overall penalty to β is multiplication by the sum of

both of these terms: β ←
(
Bmax

B + m
l

)
β.

Two other penalties stem from multicore nodes, which
bring the possibility of increased contention between cores
when accessing the interconnect, and increased contention in
switches caused by the extra messages coming from the cores.
We model this by multiplying α(hm) and γ by

⌈
cPi

P

⌉
, where

c is the number of cores per node, and P is the total number
of MPI ranks, both with data and without data. The penalized
terms are α←

⌈
cPi

P

⌉
α(hm) and γ ←

⌈
cPi

P

⌉
γ.

One last set of penalties stems from using hybrid
MPI/OpenMP; however these were already covered in Sec-
tion III-A.

2) Making the Redistribution Decision: When making the
redistribution decision, at each level l, we use the performance
model to compare two times: T lnoswitch, the time spent on level
l of the solve cycle if we do no redistribution, and T lswitch, the
time spent on level l if we do data redistribution and then
use the redistributed operator in the solve cycle, and switch
at the finest level at which T lswitch < T lnoswitch. We test this
for different numbers of chunks of processes, starting from
the smallest power of two less than pl and searching over
that and all smaller powers of two until we reach 1, which is
the absolute minimum (the fully gathered case, which has no
communication).

Assuming correct values for both, it is in fact, as Gahvari,
et. al., noted [25] best to switch at this level. Assume there are
L levels in the multigrid hierarchy, numbered 0 to L−1. If we
switch at a finer level l̂ < l, then the decision we made will
have been suboptimal due to a slowdown at levels l̂ through
l−1 combined with the improvements at levels l through L−1
we would have obtained from the original switch. If we switch
at a coarser level l̂ > l, we will again have made a suboptimal
decision – switching at level l would give the improvements
from switching at level l̂ combined with improvements from
switching at levels l through l̂−1 that switching at level l̂ would
not have provided. We will not, however, have correct values
for Tswitch and Tnoswitch, as they are based on approximations.
To counteract this, we will introduce a pair of safeguards to
prevent overeager switching decisions.

The first step in the decision is to determine T lnoswitch.
This is the more straightforward part. We use the time spent to
perform 5 MatVecs using the level l solve operator to represent
the two smoothing steps, residual formation, restriction, and
interpolation. This gives us

T lnoswitch(α, β) = 10
Nl
Pl
tl + 2(plα+ nlβ).

The network parameters can be obtained through measure-
ments; we explain how we obtain them for our experiments in
Section IV-C. The rest of the information can be obtained by
querying hypre’s data structures, except for the computation
time tl. This is allowed to vary in the model because the
computation rate for sparse matrix-vector multiply has been
observed to vary greatly depending on the size of the solve
operator and pattern and number of nonzero entries in it [27].
With no a priori way to determine it, we instead measure it
by performing 10 sequential sparse MatVecs using the locally
stored sparse matrix Dk on each process and dividing the
observed time by the number of flops performed. We exclude
processes that have no data, and take the maximum reported
value over all processes to be tl. However, if this value is
greater than the one for tl−1, we set tl = tl−1 and set tk = tl−1

for all levels k > l. This occurs when processes are close to
running out of data. They measure an abnormally high time
per flop due to primarily measuring loop overhead instead.
Progression from fine to coarse in AMG results in decreasing
matrix dimension and increasing matrix density, conditions
under which the time per flop decreases in practice [27]. We
measure like this even when using hybrid MPI/OpenMP and
simultaneous multithreading; in that case, the measured tl and
the expression for tl in the model equations is assumed to
implicitly contain the applicable penalties.

Determining T lswitch is a more involved process. Assume
there are C chunks of processes. There are two components.
The first are the collective operations that redistribute the
solution vector. We need to charge two gather operations (for
the solution and right-hand size vectors) and a scatter operation
(for the solution vector). Each operation is assumed to take
place over a binary tree over Pl

C processes, incurring
⌈
log2

Pl

C

⌉
sends. In each gather operation, if there are Cl unknowns in
the solve operator at level l, counting from the root, each stage
of gathering data on the tree involves sends of approximately
size Cl

2C ,
Cl

4C ,
Cl

8C , . . . , which we charge as Cl

C

(
1

1− 1
2

− 1
)
= Cl

C

units of data sent. The scatter operation is assumed to send
approximately Cl

C

⌈
log2

Pl

C

⌉
units of data. Using the baseline

model, we write the time spent in collective operations as

T lcollective(α, β) = 3

⌈
log2

Pl
C

⌉
α+

Cl
C

(
2 +

⌈
log2

Pl
C

⌉)
β.

The next step is to determine the cost of a MatVec using
the redistributed operator. We assume equal division of the
number of nonzero entries in the original matrix among the
gathered chunks, and assume equal distribution of the amount
of data sent per message among the number of communication
partners in the nonredistributed operator. We further assume
that each process participating in the redistributed operator
has C − 1 communication partners, which is the most com-
munication partners a process could possibly have so long as
there are fewer chunks than communication processors in the
original operator, which we assume. The network parameters
do not change, but the time per floating-point operation does.
However, we have no way of measuring it, so we leave it the
same and use the first of the two safeguards we referred to
earlier to keep it from being too much higher. The MatVec
cost is

T lnew matvec(α, β) = 2
Nl
C
tl + (C − 1)

(
α+

nl
pl
β

)
,



and the time we get for T lswitch is

T lswitch(α, β) = 5T lnew matvec(α, β) + T lcollective(α, β).

Our safeguard against increasing tl is to prevent the local
storage for the redistributed operator on each participating
process from increasing too much in size. To determine how
much is too much, we first classify the local MatVec operations
we performed when measuring tl into one of three categories,
which are explained in more detail in [27]. For categorization,
the cache size is determined by dividing the size of the shared
on-node cache by the number of MPI processes per node. This
is done to take hybrid MPI/OpenMP into account.

• Small: the matrix and the source vector fit in cache

• Medium: the source vector fits in cache, but the matrix
does not

• Large: the source vector does not fit in cache

The time per floating-point operation was found in [27] to
undergo significant jumps when moving from a smaller cat-
egory to a larger one. If data gathering causes this, it will
have a dramatic effect on performance. Thus, when evaluating
numbers of chunks to group processes into, we exclude values
that result in the problem category being at least halfway
towards one of the larger ones. The constraint is set at going
halfway rather than the more generous constraint of going all
the way because performance can degrade even well before a
category boundary is crossed; the extent to which this happens
depends on the problem and the machine.

One other safeguard we build into this process is not to
switch if it is not expected to have a big impact on the overall
cycle time. Specifically, we keep track of the predicted cycle
time according to the model, keeping a running sum that is
updated at each level of the setup phase. If there is a projected
gain from switching, but that gain is projected to be at most
5%, then we do not switch. Given a choice, we would rather
miss speedups than slow the cycle down further, and since our
model is based on approximations, we do not want to risk a
slowdowns chasing small gains. To put things another way, we
have the maxim, “Do no harm,” from the world of medicine
in mind.

C. Results

We tested data redistribution guided by the performance
model on Vulcan and Titan, the same machines we considered
before, on the same 3D 7-point Laplacian from Section III-C,
with a problem size of 30 × 30 × 30 points per core. We
ran the problem with redistribution both enabled and disabled,
taking the average of 10 trials to report our measured tim-
ings. Network parameters were measured using the latency-
bandwidth benchmark HPC Challenge benchmark suite [28],
and are reported in Table II. The best measured latency was
taken to be α(hm) and the the best measured bandwidth to be
β. γ was determined from the network topology, α(hm), and
the worst latency measured by the benchmark. Along with the
γ term, the bandwidth penalties to the baseline performance
model were used for both machines, as they were observed on
a prior Blue Gene/Q [13] and on a Cray XK6, which has the
same interconnect as the XK7 [12]. The multicore penalties to

TABLE II. NETWORK PARAMETERS FOR VULCAN AND TITAN.

Parameter Vulcan Titan
α 3.93 µs 1.80 µs
β 4.54 ns 1.31 ns
γ 88.3 ns 155 ns

α and γ were not observed to apply on these machines, so we
do not apply them here.

We used three different mixes of MPI and OpenMP per
node on each machine, to show the ability of the model
to guide redistribution under varying hybrid MPI/OpenMP
settings. Runs were on 512, 4096, and 32768 cores, using the
default block mapping of MPI ranks to nodes on the machine,
which fills up each node with MPI ranks before moving onto
the next one. Results for Vulcan are in Figure 4, and results for
Titan are in Figure 5. The selected mixes were the top three
from the prediction results in Section III-C.

Overall speedups ranged from 2% to 44%, and were dis-
tributed within that range. Large scale runs on Titan tended to
yield the best speedups, and substantial performance degrada-
tion was seen in the setup phase for the mixes with more MPI
tasks. This ran contrary to the earlier suggestion that running
all MPI on Titan was the best choice, though the solve phase,
which is what the model focuses on, was not overwhelmingly
worse running all-MPI than when running with OpenMP. For
the case of Vulcan, the overall best performer was 16 MPI tasks
per node with 4 OpenMP threads per task, which the model
had earlier suggested. Using 8 MPI tasks per node proved
inferior to using 32 MPI tasks per node, which further hints
at computation being the big contributor to the overall cost on
Blue Gene machines.

V. CONCLUSIONS

In this paper, we were successfully able to adapt a pre-
viously descriptive performance model for AMG when run
using hybrid MPI/OpenMP so that we could make predictive
use of it in two areas. The first was to guide the choice of
hybrid MPI/OpenMP when running AMG, which we did by
suggesting preferable on-node mixes of it based on the model.
The suggested mixes were for the most part validated by actual
results. Even when a suggested mix was not ideal, the model
did still help by avoiding the selection of a mix that was
going to certainly perform poorly. The second was to guide
data redistribution during the multigrid cycle meant to trade
communication for computation so that it would assuredly
improve performance. Previous work had successfully used a
performance model to guide redistribution when using only
MPI, and we extended the use of model-guided redistribution
to the hybrid MPI/OpenMP case and demonstrated its use on
two modern parallel platforms at large scales.

Our results open a number of avenues for further study.
With AMG specifically, we would like to be able to make
more precise predictions on mixes of MPI tasks and OpenMP
threads to use for running certian problems, as well as be
able to make effective projections for large problems on future
machines. We would also like to further refine our on-the-fly
data redistribution, exploring how we can gain more from it
and effectively introduce other additions like data localization
that can be guided by the model. Another important task
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for us is to model the setup phase. This phase was the one
that benefited most from data redistribution. It was also what
defied the hybrid MPI/OpenMP prediction. Having a model of
it would allow us to greatly improve our data redistribution
decisions and hybrid MPI/OpenMP suggestions.

There is also much room for further study not tied to
our specific application. Successfully predicting how much to
use a hybrid programming model when running applications
in general, let alone AMG, is going to be a big question
faced by users of large parallel machines, especially given
the trend of increasing on-node parallelism. The number
of possible choices for expressing this parallelism is going
to expand accordingly, leaving users confronted by a lot
of potential guesswork. Communication/computation tradeoffs
are also going to be an increasing part of applications with
increasing core counts in machines. As our model for AMG
is based on modeling sparse matrix-vector multiplication, one
direct avenue for expansion is to adapt it to other scientific

applications that are based on it, and this is one area we plan
on investigating.

Looking towards the future, we expect that, as architectures
continue to evolve, there will be many more “knobs” that
users can turn, in both the areas we have covered here,
hybrid programming models and communication/computation
tradeoff, and in other areas that have not yet been foreseen.
Performance modeling, as we have demonstrated here, shows
much promise in being able to turn these knobs for the users.
This will allow them to focus on their research and more
efficiently use their limited allocations on HPC machines to
that end.
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[7] K. Stüben, “An introduction to algebraic multigrid,” in Multigrid,
U. Trottenberg, C. Oosterlee, and A. Schüller, Eds. San Diego, CA:
Academic Press, 2001, pp. 413–528.

[8] R. D. Falgout, J. E. Jones, and U. M. Yang, “Pursuing Scalability
for hypre’s Conceptual Interfaces,” ACM Transactions on Mathematical
Software, vol. 31, pp. 326–350, September 2005.

[9] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan,
and W. Gropp, “Modeling the Performance of an Algebraic Multigrid
Cycle on HPC Platforms,” in 25th ACM International Conference on
Supercomputing, Tucson, AZ, June 2011.

[10] A. H. Baker, M. Schulz, and U. M. Yang, “On the Performance of an
Algebraic Multigrid Solver on Multicore Clusters,” in VECPAR’10: 9th
International Meeting on High Performance Computing for Computa-
tional Science, Berkeley, CA, June 2010.

[11] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang, “Challenges of
Scaling Algebraic Multigrid across Modern Multicore Architectures,” in
25th IEEE Parallel and Distributed Processing Symposium, Anchorage,
AK, May 2011.

[12] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang,
“Modeling the Performance of an Algebraic Multigrid Cycle on HPC
Platforms Using Hybrid MPI/OpenMP,” in 41st International Confer-
ence on Parallel Processing, Pittsburgh, PA, September 2012.

[13] ——, “Performance Modeling of Algebraic Multigrid on Blue Gene/Q:
Lessons Learned,” in 3rd International Workshop on Performance Mod-
eling, Benchmarking and Simulation of High Performance Computer
Systems, Salt Lake City, UT, November 2012.

[14] H. Gahvari and W. Gropp, “An Introductory Exascale Feasibility Study
for FFTs and Multigrid,” in 24th IEEE International Parallel and
Distributed Processing Symposium, Atlanta, GA, April 2010.

[15] J. D. McCalpin, “Sustainable Memory Bandwidth in Current High Per-
formance Computers,” Advanced Systems Division, Silicon Graphics,
Inc., Tech. Rep., 1995.

[16] “AMD Opteron 6200 Series Processors Linux Tuning Guide,”
http://developer.amd.com/resources/documentation-articles/
developer-guides-manuals.

[17] W. Gropp, “Parallel Computing and Domain Decomposition,” in Fifth
Conference on Domain Decomposition Methods for Partial Differential
Equations, T. Chan, D. Keyes, G. Meurant, J. Scroggs, and R. Voigt,
Eds. SIAM, 1992, pp. 349–361.

[18] “hypre Reference Manual, Version 2.8.0b,” https://computation.llnl.gov/
casc/hypre/download/hypre-2.8.0b ref manual.pdf.

[19] A. H. Baker, R. D. Falgout, H. Gahvari, T. Gamblin, W. Gropp, K. E.
Jordan, T. V. Kolev, M. Schulz, and U. M. Yang, “Preparing Algebraic
Multigrid for Exascale,” Lawrence Livermore National Laboratory,
Tech. Rep. LLNL-TR-533076, March 2012.

[20] D. E. Womble and B. C. Young, “A model and implementation of
multigrid for massively parallel computers,” International Journal of
High Speed Computing, vol. 2, pp. 239–255, 1990.

[21] K. Nakajima, “New Strategy for Coarse Grid Solvers in Parallel Multi-
grid Methods using OpenMP/MPI Hybrid Programming Models,” in
2012 International Workshop on Programming Models and Applications
for Multicores and Manycores, New Orleans, LA, February 2012, pp.
93–102.

[22] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G.
Sala, “ML 5.0 Smoothed Aggregation User’s Guide,” Sandia National
Laboratories, Tech. Rep. SAND2006-2649, February 2007.

[23] R. S. Sampath and G. Biros, “A parallel geometric multigrid method
for finite elements on octree meshes,” SIAM Journal on Scientific
Computing, vol. 32, pp. 1361–1392, 2010.

[24] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler,
“Parallel Geometric-Algebraic Multigrid on Unstructured Forests of
Octrees,” in SC12: Proceedings of the 2012 ACM/IEEE Conference
on Supercomputing, Salt Lake City, UT, November 2012.

[25] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang, “Sys-
tematic Reduction of Data Movement in Algebraic Multigrid Solvers,”
in 5th Workshop on Large-Scale Parallel Processing, Cambridge, MA,
May 2013.

[26] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk,
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